Nearly-tight sample complexity bounds for learning mixtures of Gaussians

Hassan Ashtiani (McMaster)

Shai Ben-David (Waterloo)

Nick Harvey (UBC)

Abbas Mehrabian (McGill)

Yaniv Plan (UBC)

Chris Liaw (UBC) NeurIPS, December 2018

Density estimation

Density estimation

Fundamental & well-studied problem with many applications!

[Feldman et al. '06; Suresh et al. '14; Ashtiani et al. '17; Diakonikolas et al. '14-'18, etc.]

Q $[D'_{16}]$: "For a distribution class \mathcal{F} , is there a complexity measure that characterizes the sample complexity of \mathcal{F} ?"

Learning Gaussians

Single Gaussian in \mathbb{R}^d . $O\left(\frac{d^2}{\epsilon^2}\right)$ samples are sufficient to recover Gaussian up to L_1 -error ϵ .

Learning Gaussians

Single Gaussian in \mathbb{R}^d . $O\left(\frac{d^2}{\epsilon^2}\right)$ samples are sufficient to recover Gaussian up to L_1 -error ϵ .

Mixture of *k* Gaussians in \mathbb{R}^d . Q: Are $O\left(\frac{kd^2}{\epsilon^2}\right)$ samples sufficient? Know that $\tilde{O}\left(\frac{kd^2}{\epsilon^4}\right)$ are sufficient. [Ashtiani et al. '17]

Note: We aim to recover density, not parameters of the mixture.

Main Contribution

- *"Other things being equal, simpler explanations are generally better..."* [William of Ockham]
- One manifestation of this in learning theory is "sample compression". [e.g. Littlestone, Warmuth '86; Moran, Yehudayoff '16]

Main Contribution

- *"Other things being equal, simpler explanations are generally better..."* [William of Ockham]
- One manifestation of this in learning theory is "sample compression". [e.g. Littlestone, Warmuth '86; Moran, Yehudayoff '16]

We introduce a **simple & sample-efficient** technique for density estimation via **compression schemes**.

Main Contribution

- *"Other things being equal, simpler explanations are generally better..."* [William of Ockham]
- One manifestation of this in learning theory is "sample compression". [e.g. Littlestone, Warmuth '86; Moran, Yehudayoff '16]

We introduce a **simple & sample-efficient** technique for density estimation via **compression schemes**.

- Application: $\tilde{O}(kd^2/\epsilon^2)$ samples suffice to learn mixtures of k Gaussians in \mathbb{R}^d .
- We also show nearly-matching lower bound of $\tilde{\Omega}(kd^2/\epsilon^2)$.

*Note: \tilde{O} and $\tilde{\Omega}$ hide polylog(kd/ϵ) factors.

Compressing Gaussians in \mathbb{R}

Compressing Gaussians in R

Compressing Gaussians in R

Two samples are **sufficient** to **encode** $\mathcal{N}(\mu, \sigma^2)$.

Compression Framework

 \mathcal{F} : a class of distributions (e.g. Gaussians)

Compression Framework

F: a class of distributions (e.g. Gaussians)

i.i.d. samples from $\mathcal{D} \in \mathcal{F}$

Knows \mathcal{D} , \mathcal{F}

Compression Framework

 \mathcal{F} : a class of distributions (e.g. Gaussians)

If Alice sends t points and Bob approximates \mathcal{D} then we say \mathcal{F} has compression of size t.

Compression Theorem

Theorem [ABHLMP '18] If \mathcal{F} has a compression scheme of size t then sample complexity to learn \mathcal{F} (up to L_1 -error ϵ) is

$$\widetilde{O}\left(\frac{t}{\epsilon^2}\right)$$
. $\widetilde{O}(\cdot)$ hides polylog factors

Small compression schemes imply **sample-efficient** algorithms.

Compression Theorem

Theorem [ABHLMP '18] If \mathcal{F} has a compression scheme of size t then sample complexity to learn \mathcal{F} (up to L_1 -error ϵ) is

$$\widetilde{O}\left(\frac{t}{\epsilon^2}\right)$$
. $\widetilde{O}(\cdot)$ hides polylog factors

Small compression schemes imply **sample-efficient** algorithms.

Proof idea.

- Compression is used to find small set of "representative" distributions.
- Now, we can learn with respect to a finite class.

 $\mathcal{N}(\mu_3, \sigma_3^2)$ Cheat: assume a uniform mixture. $\mathcal{N}(\mu_1, \sigma_1^2)$ $\mathcal{N}(\mu_2, \sigma_2^2)$

If \mathcal{F} has a compression of size t then k mixtures of \mathcal{F} have a compression of size $\approx kt$.

Compression Theorem for Mixtures

Theorem [ABHLMP '18] If \mathcal{F} has a compression scheme of size t then sample complexity to learn k mixtures of \mathcal{F} (up to L_1 -error ϵ) is

$$\widetilde{O}\left(\frac{kt}{\epsilon^2}\right)$$
. $\widetilde{O}(\cdot)$ hides polylog factors

Small compression schemes imply sample-efficient algorithms for **mixtures**.

Compression Theorem for Mixtures

Theorem [ABHLMP '18] If \mathcal{F} has a compression scheme of size t then sample complexity to learn k mixtures of \mathcal{F} (up to L_1 -error ϵ) is

$$\widetilde{O}\left(\frac{\kappa \iota}{\epsilon^2}\right)$$
. $\widetilde{O}(\cdot)$ hides polylog factors

Small compression schemes imply sample-efficient algorithms for **mixtures**.

Q: Does an analogous statement hold for other notions of complexity (e.g. VC-dimension)?

Encoding center and axes of ellipsoid is sufficient to recover $\mathcal{N}(\mu, \Sigma)$.

Encoding center and axes of ellipsoid is sufficient to recover $\mathcal{N}(\mu, \Sigma)$.

Points drawn from $\mathcal{N}(\mu, \Sigma)$.

Encoding center and axes of ellipsoid is sufficient to recover $\mathcal{N}(\mu, \Sigma)$.

Ellipsoid defined by μ , Σ . Points drawn from $\mathcal{N}(\mu, \Sigma)$.

Encoding center and axes of ellipsoid is sufficient to recover $\mathcal{N}(\mu, \Sigma)$.

Ellipsoid defined by μ , Σ . Points drawn from $\mathcal{N}(\mu, \Sigma)$.

Encoding center and axes of ellipsoid is sufficient to recover $\mathcal{N}(\mu, \Sigma)$.

In general, $\tilde{O}(d^2)$ compression is possible for Gaussians in \mathbb{R}^d .

Theorem [ABHLMP '18] Sample complexity for learning mixtures of k Gaussians in \mathbb{R}^d up to L_1 -error ϵ is

$$\widetilde{\mathbf{0}}\left(\frac{kd^2}{\epsilon^2}\right)$$
 $\widetilde{\mathbf{0}}(\cdot)$ hides polylog factors

- Improves upon:
 - $\tilde{O}(k^4 d^4/\epsilon^2)$ via a VC-dimension argument
 - $\tilde{O}(kd^2/\epsilon^4)$ [Ashtiani, Ben-David, Mehrabian '17]
- This is nearly-tight! We show $\tilde{\Omega}(kd^2/\epsilon^2)$ samples are necessary.
 - Improves on previous bound of $\tilde{\Omega}(kd/\epsilon^2)$ [Suresh et al. NeurIPS '14]
- Compression ideas can be extended to agnostic learning as well.

Summary

- We introduced a compression framework for density estimation.
 - Application: improved upper bounds for learning mixtures of Gaussians.
 - **Q**: Other applications of compression?
 - **Q**: Can we get a more computationally-efficient algorithm?
- We also show a nearly-matching lower bound for learning mixtures of Gaussians.

Summary

- We introduced a compression framework for density estimation.
 - **Application:** improved upper bounds for learning mixtures of Gaussians.
 - **Q**: Other applications of compression?
 - **Q**: Can we get a more computationally-efficient algorithm?
- We also show a nearly-matching lower bound for learning mixtures of Gaussians.