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Fundamental & well-studied problem with many applications!
[Feldman et al. ’06; Suresh et al. ’14; Ashtiani et al. ’17; Diakonikolas et al. ‘14-’18, etc.]

Q [D ‘16]: “For a distribution class ℱ, is there a complexity measure that 
characterizes the sample complexity of ℱ?”
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Single Gaussian in ℝ𝒅.
𝑂 *+

,+
samples are sufficient to

recover Gaussian up to 𝐿%-error 𝜖.

Mixture of 𝒌 Gaussians in ℝ𝒅.
Q: Are 𝑂 /*+

,+
samples sufficient?

Know that 𝑂0 /*+

,1
are sufficient. [Ashtiani et al. ‘17]

Note: We aim to recover density, not parameters of the mixture.
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• “Other things being equal, simpler explanations are generally better…”
[William of Ockham]
• One manifestation of this in learning theory is “sample compression”.
• [e.g. Littlestone, Warmuth ‘86; Moran, Yehudayoff ‘16]

We introduce a simple & sample-efficient technique for density 
estimation via compression schemes.

• Application: 𝑂0 𝑘𝑑4/𝜖4 samples suffice to learn mixtures of 𝑘
Gaussians in ℝ*.
• We also show nearly-matching lower bound of Ω7 𝑘𝑑4/𝜖4 .

*Note: 𝑂0 and Ω7 hide polylog(𝑘𝑑/𝜖) factors.
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𝒩 𝜇, 𝜎4

Two samples are sufficient to encode 𝒩 𝜇, 𝜎4 .

𝑋4 − 𝑋%
2

≈ 𝜎
𝑋4 + 𝑋%

2
≈ 𝜇
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If Alice sends 𝑡 points and Bob approximates 𝒟 then we say
ℱ has compression of size 𝑡.

i.i.d. samples
from 𝒟 ∈ ℱ

𝒟" ≈ 𝒟
reconstruct

Knows 𝒟, ℱ Knows ℱ

ℱ: a class of distributions (e.g. Gaussians)

Compression𝑡 points
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𝑶7
𝒕
𝝐𝟐

.

Poster #100

Small compression schemes imply
sample-efficient algorithms.

Proof idea.
• Compression is used to find small set of “representative” distributions.
• Now, we can learn with respect to a finite class.

O7 O hides polylog factors
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𝑋% 𝑋4 𝑋P 𝑋Q 𝑋R𝑋S

Cheat: assume a uniform mixture.

𝒩 𝜇%, 𝜎%4 𝒩 𝜇4, 𝜎44

𝒩 𝜇P, 𝜎P4

𝑋% ≈ 𝜇% − 𝜎%
𝑋4 ≈ 𝜇% + 𝜎%

𝑋P ≈ 𝜇4 − 𝜎4
𝑋Q ≈ 𝜇4 + 𝜎4

𝑋R ≈ 𝜇P − 𝜎P
𝑋S ≈ 𝜇P + 𝜎P
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If ℱ has a compression of size 𝒕 then
𝒌 mixtures of ℱ have a compression of size ≈ 𝒌𝒕.

𝑋% 𝑋4 𝑋P 𝑋Q 𝑋R𝑋S

Cheat: assume a uniform mixture.

𝒩 𝜇%, 𝜎%4 𝒩 𝜇4, 𝜎44

𝒩 𝜇P, 𝜎P4
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Small compression schemes imply
sample-efficient algorithms for mixtures.

Q: Does an analogous statement hold for other notions of complexity
(e.g. VC-dimension)?

O7 O hides polylog factors
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Encoding center and axes of ellipsoid 
is sufficient to recover 𝒩 𝜇, Σ . 

In general, 𝑂0 𝑑4 compression is 
possible for Gaussians in ℝ*.

𝑣% 𝑣4

Ellipsoid defined by 𝜇, Σ.
Points drawn from 𝒩 𝜇, Σ .

𝑋%

𝑋4



Application: Learning Mixtures of Gaussians
Theorem [ABHLMP ’18] Sample complexity for learning mixtures of 
𝑘 Gaussians in ℝ* up to 𝐿%-error 𝜖 is

𝐎7
𝒌𝒅𝟐

𝝐𝟐
O7 O hides polylog factors

Poster #100

• Improves upon:
• 𝑂(𝑘Q𝑑Q/𝜖4) via a VC-dimension argument
• 𝑂0(𝑘𝑑4/𝜖Q) [Ashtiani, Ben-David, Mehrabian ‘17]

• This is nearly-tight! We show Ω7 𝑘𝑑4/𝜖4 samples are necessary.
• Improves on previous bound of Ω7 𝑘𝑑/𝜖4 	[Suresh et al. NeurIPS ‘14]

• Compression ideas can be extended to agnostic learning as well.
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• Q: Can we get a more computationally-efficient algorithm?

• We also show a nearly-matching lower bound for learning mixtures 
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Thank you!
See us at poster #100!

• We introduced a compression framework for density estimation.
• Application: improved upper bounds for learning mixtures of 

Gaussians.
• Q: Other applications of compression?
• Q: Can we get a more computationally-efficient algorithm?

• We also show a nearly-matching lower bound for learning mixtures 
of Gaussians.


