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Density estimation

i.i.d. samples A ~
Unknown P D~D

Distribution D

(in L,-distance)
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Density estimation

i.i.d. samples A ~
Unknown P D~D

Distribution D

(in L,-distance)

Fundamental & well-studied problem with many applications!
[Feldman et al. ’06; Suresh et al. '14; Ashtiani et al. “17; Diakonikolas et al. “14-"18, etc.]

Q [D“16]: “For a distribution class F, is there a complexity measure that
characterizes the sample complexity of F?”
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Learning Gaussians

Single Gaussian in R<.

2
0 (d—z) samples are sufficient to
€

recover Gaussian up to Li-error €.
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Learning Gaussians

Single Gaussian in R<.

dZ
0 (62) samples are sufficient to
recover Gaussian up to Li-error €.

Mixture of k Gaussians in R<.
2
Q: Are O (kd ) samples sufficient?

2
Know that O ( ) are sufficient. [Ashtiani et al. “17]

Note: We aim to recover density, not parameters of the mixture.
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Main Contribution

« “Other things being equal, simpler explanations are generally better...”
[William of Ockham]

* One manifestation of this in learning theory is “sample compression”.
[e.g. Littlestone, Warmuth ‘86; Moran, Yehudayoff ‘16]
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Main Contribution

« “Other things being equal, simpler explanations are generally better...”
[William of Ockham]

* One manifestation of this in learning theory is “sample compression”.
[e.g. Littlestone, Warmuth ‘86; Moran, Yehudayoff ‘16]

We introduce a simple & sample-efficient technique for density
estimation via compression schemes.

» Application: 0(kd?/e?) samples suffice to learn mixtures of k
Gaussians in R?.

» We also show nearly-matching lower bound of Q(kd?/e?).

*Note: 0 and Q hide polylog(kd/€) factors.
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Compressing Gaussians in R

N(u,0%)
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Compressing Gaussians in R

N(u,0°)
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Compressing Gaussians in R

N(u,0%)
Xl XZ
® —o—eo— o—o o
Uu—o u H+o
X, + X4 Xy — X4
z‘u ~ 0

2 2
Two samples are sufficient to encode N (u, o).
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Compression Framework

F: a class of distributions (e.g. Gaussians)

Knows D, F Knows F
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Compression Framework

F: a class of distributions (e.g. Gaussians)

o ©

i.i.d. samples
fromD € F

Knows D, F
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Compression Framework

F: a class of distributions (e.g. Gaussians)

i.i.d. samples t points
fromD e F °
]

— Compression
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€ a)

Knows D, F &\ 1

If Alice sends t points and Bob approximates D then we say
F has compression of size t.
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Compression Theorem

Theorem [aBHLMP ‘18] If F has a compression scheme of size t then
sample complexity to learn F (up to L;-error €) is

~ (T
O (6_2) . 0(") hides polylog factors

Small compression schemes imply
sample-efficient algorithms.
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Compression Theorem

Theorem [aBHLMP ‘18] If F has a compression scheme of size t then
sample complexity to learn F (up to L;-error €) is

~ (T
O (E_Z) . 0(") hides polylog factors

Small compression schemes imply
sample-efficient algorithms.

Proof idea.
* Compression is used to find small set of “representative” distributions.
« Now, we can learn with respect to a finite class.
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Compression Of Mixtures

Cheat: assume a uniform mixture. N (3, 0%)
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Compression Of Mixtures

Cheat: assume a uniform mixture. N (3, 0%)
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Compression Of Mixtures

Cheat: assume a uniform mixture. N (3, 0%)

X1 =y — 01 X3 = Uy —0 X5 = U3 — 03
Xy = Uy + 0y Xy = U+ 0y Xg = U3+ 03
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Compression Of Mixtures

Cheat: assume a uniform mixture. N (3, 0%)

N(Hl)o-lz) N(‘le,o-zz)
o—@ *—©O

X1 X X3 Xy X5 Xe

If F has a compression of size t then
k mixtures of F have a compression of size = kt.
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Compression Theorem for Mixtures

Theorem [aBHLMP ‘18] If F has a compression scheme of size t then
sample complexity to learn k mixtures of F (up to L;-error €) is

~

kt L
0 (E_Z) . 0(-) hides polylog factors

Small compression schemes imply
sample-efficient algorithms for mixtures.
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Compression Theorem for Mixtures

Theorem [aBHLMP ‘18] If F has a compression scheme of size t then
sample complexity to learn k mixtures of F (up to L;-error €) is

~

kt L
0 (?) . 0(-) hides polylog factors

Small compression schemes imply
sample-efficient algorithms for mixtures.

Q: Does an analogous statement hold for other notions of complexity
(e.g. VC-dimension)?
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Application: Learning Mixtures of Gaussians

Encoding center and axes of ellipsoid P »
. . o - -\
is sufficient to recover NV (i, 2). o’ e
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Ellipsoid defined by p, 2.
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Application: Learning Mixtures of Gaussians

Encoding center and axes of ellipsoid e PR
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Ellipsoid defined by p, 2.
Points drawn from N (u, ).
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Application: Learning Mixtures of Gaussians

Encoding center and axes of ellipsoid P ® :;\‘ R
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is sufficient to recover NV (i, 2). g o
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Ellipsoid defined by p, 2.
Points drawn from N (y, ).
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Application: Learning Mixtures of Gaussians
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Encoding center and axes of ellipsoid P e X
. . - 1
is sufficient to recover NV (u, 2). P ! @
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Ellipsoid defined by p, 2.
Points drawn from N (y, ).
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Application: Learning Mixtures of Gaussians

O - . .y,
-
-

Encoding center and axes of ellipsoid - @ N
. . e - 1
is sufficient to recover NV (u, 2). g ! @
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In general, 0(d*) compression is / s
. . . I ’
possible for Gaussians in R%. ( s

Ellipsoid defined by p, 2.
Points drawn from N (y, ).
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Application: Learning Mixtures of Gaussians

Theorem [ABHLMP '18] Sample complexity for learning mixtures of
k Gaussians in R? up to L,-error € is

_ (kd?\ _
0 ez 0(+) hides polylog factors

* Improves upon:

* 0(k*d*/€*) via a VC-dimension argument
* 0(kd?/e*) [Ashtiani, Ben-David, Mehrabian ‘17]

» This is nearly-tight! We show Q(kd?/€?) samples are necessary.
« Improves on previous bound of Q(kd/e?) [Suresh et al. NeurIPS “14]

» Compression ideas can be extended to agnostic learning as well.
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Summary

* We introduced a compression framework for density estimation.
* Application: improved upper bounds for learning mixtures ot
Gaussians.
* Q: Other applications of compression?
* Q: Can we get a more computationally-efficient algorithm?
» We also show a nearly-matching lower bound for learning mixtures
of Gaussians.
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Summary

* We introduced a compression framework for density estimation.
* Application: improved upper bounds for learning mixtures ot
Gaussians.
* Q: Other applications of compression?
* Q: Can we get a more computationally-efficient algorithm?
» We also show a nearly-matching lower bound for learning mixtures

of Gaussians.
Thank you!

See us at ‘poster #100!
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