Vickrey Auction with Single Duplicate Approximates Optimal Revenue

Hu Fu UBC

Sikander Randhawa UBC

Chris Liaw (UBC) EC '19, June 2019

Setting

• *n* bidders, single item

Bulow and Klemperer's Theorem

Second price (Vickrey) auction

- ✓ Simple and prior-free
- ✓ Efficient allocation
- ✗ May have poor revenue

Revenue-optimal auction

- ✗ Complex auction
- **×** Requires prior knowledge
- ✓ Maximizes revenue

William Vickrey

Roger Myerson

Bulow and Klemperer's Theorem

Second price (Vickrey) auction

- Simple and prior-freeEfficient allocation
- X May have poor revenue

Revenue-optimal auction

- X Complex auction
- **X** Requires prior knowledge
- ✓ Maximizes revenue

Theorem. [Bulow, Klemperer '96] Given *n* i.i.d. bidders, the second price auction with **one** additional bidder, from the same distribution, yields at least as much revenue as the optimal auction with the original *n* bidders. [assuming value distributions are "regular"]

 \checkmark \checkmark \checkmark \checkmark \checkmark Second price auction \geq Optimal auction

Bulow and Klemperer's Theorem

Second price (Vickrey) auction

- Simple and prior-freeEfficient allocation
- ★ May have poor revenue

Revenue-optimal auction

- X Complex auction
- **X** Requires prior knowledge
- ✓ Maximizes revenue

Theorem. [Bulow, Klemperer '96] Given *n* i.i.d. bidders, the second price auction with **one** additional bidder, from the same distribution, yields at least as much revenue as the optimal auction with the original *n* bidders. [assuming value distributions are "regular"]

Q: Is a similar result true when distributions are not identical? It does **not** work to choose an arbitrary bidder and recruit a copy.

E.g., what if only Mario has a high value for mushroom?

A non-i.i.d. version of BK

Theorem. [Hartline, Roughgarden '09] Given *n* independent bidders, the second price auction with *n* additional bidders, one from each given distribution, yields at least half as much revenue as the optimal auction with the original *n* bidders. [assuming value distributions are "regular"]

Second price auction $\geq \frac{1}{2} \cdot \text{Optimal auction}$

A non-i.i.d. version of BK

Theorem. [Hartline, Roughgarden '09] Given *n* independent bidders, the second price auction with *n* additional bidders, one from each given distribution, yields at least half as much revenue as the optimal auction with the original *n* bidders. [assuming value distributions are "regular"]

Theorem. [Bulow, Klemperer '96] Given *n* i.i.d. bidders, the second price auction with **one** additional bidder, from the same distribution, yields **at least as much** revenue as the optimal auction with the original *n* bidders. [assuming value distributions are "regular"]

Two key differences:

- 1. Recruits *n* bidders instead of **one**.
- 2. Revenue is **approximately** optimal.

Approximation is **necessary**. Better than ³/₄ is impossible.

Q: How many bidders suffice for second price to be approximately optimal? **Q:** Can we recruit fewer than *n* additional bidders? What about **one** bidder?

Main Result

Theorem. [Fu, L., Randhawa '19] Given *n* independent bidders, there exists one bidder such that the second price auction with an additional copy of that bidder yields at least $\Omega(1)$ fraction as much revenue as the optimal auction for the original *n* bidders [assuming value distributions are "regular"].

Main Result

Theorem. [Fu, L., Randhawa '19] Given *n* independent bidders, there exists one bidder such that the second price auction with an additional copy of that bidder yields at least $\Omega(1)$ fraction as much revenue as the optimal auction for the original *n* bidders [assuming value distributions are "regular"].

Remark. Techniques can be extended to show that for auctions with k identical items and n unit-demand bidders, a (k + 1)th price auction with k additional bidders yields at least $\Omega(1)$ fraction of optimal revenue.

Main Result

Theorem. [Fu, L., Randhawa '19] Given *n* independent bidders, there exists one bidder such that the second price auction with an additional copy of that bidder yields at least $\Omega(1)$ fraction as much revenue as the optimal auction for the original *n* bidders [assuming value distributions are "regular"].

Remark. Techniques can be extended to show that for auctions with k identical items and n unit-demand bidders, a (k + 1)th price auction with k additional bidders yields at least $\Omega(1)$ fraction of optimal revenue.

Up to an **approximation**, BK theorem extends to **non-i.i.d.** setting with the **same** number of recruitments.

Additional results

Theorem. Suppose there are **2** independent bidders. Recruiting a copy of each bidder and running a second price auction yields at least ³/₄ fraction of revenue of the optimal auction with original **2** bidders. [assuming value distributions are "regular"]

Improves on the ¹/₂-approximation and is **tight**. [Hartline, Roughgarden '09]

To prove this, we make a connection between the second-price auction with recruitments and Ronen's "lookahead auction".

En route, this gives a new proof of Hartline and Roughgarden's ¹/₂-approximation result.

Proof sketch of main result

Theorem. [Fu, L., Randhawa '19] Given *n* independent bidders, there exists one bidder such that the second price auction with an additional copy of that bidder yields at least $\Omega(1)$ fraction as much revenue as the optimal auction for the original *n* bidders [assuming value distributions are "regular"].

Theorem would be true if:

- 1. Second price for original bidders is approximately optimal.
- 2. Some bidder has high value with high probability.
 - Via a reduction to Bulow-Klemperer Theorem.

Lemma. Given *n* distributions, at least one of the following must be true: 1. revenue of 2^{nd} price auction is $\Omega(1) \cdot OPT$; or 2. some bidder *i* has value $\Omega(1) \cdot OPT$ with probability $\Omega(1)$. [assuming "regularity"]

Rev. of optimal auction.

Overview of approach

Lemma. Given *n* distributions, at least one of the following is true:

1. revenue of 2^{nd} price auction is $\Omega(1) \cdot OPT$; or

```
2. some bidder i has value \Omega(1) \cdot OPT with probability \Omega(1). [assuming "regularity"]
```

Overview of approach:

- 1. We consider the "ex-ante relaxation", allowing us to decouple interaction amongst the bidders.
- 2. "Regular" distributions have nice geometric properties which we exploit on a per-bidder basis.

Ex-ante relaxation is common technique to obtain upper bounds. [e.g. Alaei et al. '12; Alaei '14; Alaei et al. '15; Chawla, Miller '16; Feng, Hartline, Li '19]

Sketch of lemma

Lemma. Given *n* distributions, at least one of the following is true:

- 1. revenue of 2^{nd} price auction is $\Omega(1) \cdot OPT$; or
- 2. some bidder *i* has value $\Omega(1) \cdot OPT$ with probability $\Omega(1)$. [assuming "regularity"]

Suppose that case 2 does not hold, i.e.

$$p_i = \Pr\left[v_i \ge \frac{1}{2} \cdot OPT\right] \le \frac{1}{2}$$
 for all i .

Using properties of regularity & geometry of "revenue curves" we show that

$$\sum_{i} p_{i} \ge 1$$

Simple Fact. Suppose we flip *n* coins, where coin *i* has prob. of heads $p_i \leq \frac{1}{2}$ and $\sum_i p_i \geq 1$. Then at least two coins are heads with probability $\Omega(1)$.

Information requirements for recruitment

Theorem. [Fu, L., Randhawa '19] Given *n* independent bidders, and assuming "mild distribution knowledge", there is an algorithm that decides a bidder to recruit so that the second price auction with an additional copy of that bidder yields at least $\Omega(1)$ fraction as much revenue as the optimal auction for the original *n* bidders. [assuming value distributions are "regular"]

In the paper, we give some examples of distribution knowledge which are sufficient for recruitment.

Conclusions & Open Questions

- We showed that recruiting a *single* bidder and running 2^{nd} price yields revenue which is at least $\frac{1}{10}$ of optimal revenue.
 - Can this approximation be improved?
 - Impossible to do better than ≈ 0.694 .
- If we recruit *n* bidders, best approximation is ½ and better than ¾ is impossible.
 - For n = 2, the $\frac{3}{4}$ is tight.
- Q: What is the tight approximation ratio for this setting?